To contact Cabling Installation & Maintenance:

About Cabling Installation & Maintenance:

Bringing practical business and technical intelligence to today's structured cabling professionals.

For more than 30 years, Cabling Installation & Maintenance has provided useful, practical information to professionals responsible for the specification, design, installation and management of structured cabling systems serving enterprise, data center and other environments. These professionals are challenged to stay informed of constantly evolving standards, system-design and installation approaches, product and system capabilities, technologies, as well as applications that rely on high-performance structured cabling systems. Our editors synthesize these complex issues into multiple information products. This portfolio of information products provides concrete detail that improves the efficiency of day-to-day operations, and equips cabling professionals with the perspective that enables strategic planning for networks’ optimum long-term performance.

Throughout our annual magazine, weekly email newsletters and 24/7/365 website, Cabling Installation & Maintenance digs into the essential topics our audience focuses on:

  • Design, Installation and Testing: We explain the bottom-up design of cabling systems, from case histories of actual projects to solutions for specific problems or aspects of the design process. We also look at specific installations using a case-history approach to highlight challenging problems, solutions and unique features. Additionally, we examine evolving test-and-measurement technologies and techniques designed to address the standards-governed and practical-use performance requirements of cabling systems.
  • Technology: We evaluate product innovations and technology trends as they impact a particular product class through interviews with manufacturers, installers and users, as well as contributed articles from subject-matter experts.
  • Data Center: Cabling Installation & Maintenance takes an in-depth look at design and installation workmanship issues as well as the unique technology being deployed specifically for data centers.
  • Physical Security: Focusing on the areas in which security and IT—and the infrastructure for both—interlock and overlap, we pay specific attention to Internet Protocol’s influence over the development of security applications.
  • Standards: Tracking the activities of North American and international standards-making organizations, we provide updates on specifications that are in-progress, looking forward to how they will affect cabling-system design and installation. We also produce articles explaining the practical aspects of designing and installing cabling systems in accordance with the specifications of established standards.

New method to blend functions for soft electronics



Mixing two or three alkyl-π liquids can achieve the right combination of functions for soft electronics.

TSUKUBA, Japan, June 18, 2025 - (ACN Newswire) - Soft electronics are an exciting and innovative class of technology that brings together bendable, stretchable semiconducting materials for applications in areas ranging from fashion to healthcare.  Researchers have recently developed a new technique to adjust the properties of liquids that could be used to create soft electronics.

Researchers successfully blended various combinations and proportions of three solvent-free alkyl-π room-temperature liquids that fluoresced red, green, or blue light, with no color variation within the material showing that the alkyl-π liquids had merged evenly. Credit: Image is reproducible by CC-BY license. Please credit the STAM Journal.
Researchers successfully blended various combinations and proportions of three solvent-free alkyl-π room-temperature liquids that fluoresced red, green, or blue light, with no color variation within the material showing that the alkyl-π liquids had merged evenly. (Credit: Image is reproducible by CC-BY license. Please credit the STAM Journal.)

Room-temperature alkylated-π molecular liquids (known as alkyl-π liquids) are an exciting new material that holds great promise for soft electronics. However, one challenge with these fascinating liquids lies in fine-tuning their physical, chemical, and electronic properties – including their ability to interact with light – to achieve the desired functionality.

A new study, led by researchers from the National Institute of Materials Science (NIMS) in Tsukuba, Japan, has explored a strategy for blending together alkyl-π liquids to merge their functions homogeneously. The researchers used photoluminescent color tuning to demonstrate how well the process has worked. Their findings have been published in the journal Science and Technology of Advanced Materials.

Previous efforts to control the properties of alkyl-π liquids have taken one of two approaches. The first involves incorporating small amounts of other molecules, such as dyes, into the liquid. “When modulating function by adding solid dopants, the dopant molecules have poor solubility, leading to insoluble aggregates and inconsistencies in properties such as luminescent color,” says Dr. Takashi Nakanishi of the Research Center for Materials Nanoarchitectonics at NIMS.

The second approach involves chemically modifying the alkyl-π liquids. While this can achieve a uniform result, designing and synthesising entirely new molecules is difficult and less time- and cost-effective.

In the new study, researchers synthesised three solvent-free alkyl-π room-temperature liquids that fluoresced red, green, or blue light, and then they blended the liquids together in varying proportions. They successfully created a range of homogeneous liquid blends of colors with no color variation within the material, showing that the alkyl-π liquids had merged evenly.

The team also assessed how well the two liquids had mixed by changing the temperature and studying how the flow of the mixed liquids changed over time at different temperatures. This approach further confirmed that the liquids were successfully blended together.

“The liquid–liquid blending method implemented in this study for alkyl-π liquids facilitates the production of low-volatility, ink-like materials that exhibit a diverse spectrum of uniform luminescent colors, devoid of any color unevenness,” Dr. Nakanishi says. “This means it will be possible to apply or coat the desired function with simple operations such as painting, sandwiching, or soaking the liquid materials wherever needed.”

The research opens the path to blending alkyl-π liquids to vary other functions, such as photoconductivity, charge retention, or gas sensing.

Further information
Takashi Nakanishi
National Institute for Materials Science (NIMS)
nakanishi.takashi@nims.go.jp

Paper: https://doi.org/10.1080/14686996.2025.2515007

About Science and Technology of Advanced Materials (STAM)

Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials. https://www.tandfonline.com/STAM 

Dr. Kazuya Saito
STAM Publishing Director
Email: SAITO.Kazuya@nims.go.jp

Press release distributed by Asia Research News for Science and Technology of Advanced Materials.

]]>

Source: Science and Technology of Advanced Materials

Copyright 2025 ACN Newswire . All rights reserved.

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.