About Cabling Installation & Maintenance

Our mission: Bringing practical business and technical intelligence to today's structured cabling professionals

For more than 30 years, Cabling Installation & Maintenance has provided useful, practical information to professionals responsible for the specification, design, installation and management of structured cabling systems serving enterprise, data center and other environments. These professionals are challenged to stay informed of constantly evolving standards, system-design and installation approaches, product and system capabilities, technologies, as well as applications that rely on high-performance structured cabling systems. Our editors synthesize these complex issues into multiple information products. This portfolio of information products provides concrete detail that improves the efficiency of day-to-day operations, and equips cabling professionals with the perspective that enables strategic planning for networks’ optimum long-term performance.

Throughout our annual magazine, weekly email newsletters and 24/7/365 website, Cabling Installation & Maintenance digs into the essential topics our audience focuses on.

  • Design, Installation and Testing: We explain the bottom-up design of cabling systems, from case histories of actual projects to solutions for specific problems or aspects of the design process. We also look at specific installations using a case-history approach to highlight challenging problems, solutions and unique features. Additionally, we examine evolving test-and-measurement technologies and techniques designed to address the standards-governed and practical-use performance requirements of cabling systems.
  • Technology: We evaluate product innovations and technology trends as they impact a particular product class through interviews with manufacturers, installers and users, as well as contributed articles from subject-matter experts.
  • Data Center: Cabling Installation & Maintenance takes an in-depth look at design and installation workmanship issues as well as the unique technology being deployed specifically for data centers.
  • Physical Security: Focusing on the areas in which security and IT—and the infrastructure for both—interlock and overlap, we pay specific attention to Internet Protocol’s influence over the development of security applications.
  • Standards: Tracking the activities of North American and international standards-making organizations, we provide updates on specifications that are in-progress, looking forward to how they will affect cabling-system design and installation. We also produce articles explaining the practical aspects of designing and installing cabling systems in accordance with the specifications of established standards.

Cabling Installation & Maintenance is published by Endeavor Business Media, a division of EndeavorB2B.

Contact Cabling Installation & Maintenance

Editorial

Patrick McLaughlin

Serena Aburahma

Advertising and Sponsorship Sales

Peter Fretty - Vice President, Market Leader

Tim Carli - Business Development Manager

Brayden Hudspeth - Sales Development Representative

Subscriptions and Memberships

Subscribe to our newsletters and manage your subscriptions

Feedback/Problems

Send a message to our general in-box

 

Announcing the New MLPerf Client Working Group

New MLCommons effort will build ML benchmarks for desktop, laptop and workstations for Microsoft Windows and other operating systems.

Today MLCommons® is announcing the formation of a new MLPerf™ Client working group. Its goal is to produce machine learning benchmarks for client systems such as desktops, laptops, and workstations based on Microsoft Windows and other operating systems. The MLPerf suite of benchmarks is the gold standard for AI benchmarks in the data center, and we are now bringing our collaborative, community-focused development approach and deep technical understanding of machine learning (ML) towards creating a consumer client systems benchmark suite.

As the impact of AI grows and offers new capabilities to everyone, it is increasingly an integral part of the computing experience. Silicon for client systems incorporates AI-specific hardware acceleration capabilities of various types, and OS and application vendors are adding AI-driven features into software to boost productivity and to unleash the creativity of millions of end users. As these hardware and software capabilities proliferate, many ML models will execute locally on client systems. The industry will require reliable, standard ways to measure the performance and efficiency of AI acceleration solutions on client systems.

The MLPerf Client benchmarks will be scenario-driven focusing on real end-user use cases and grounded in feedback from the community. The first benchmark will focus on a large language model, specifically, the Llama 2 LLM. The MLCommons community has already navigated many of the challenges LLMs present in client systems, such as balancing performance against output quality, licensing issues involving datasets and models, and safety concerns through the incorporation of Llama 2-based workloads in the MLCommons training and inference benchmark suites. This learning will help jump-start this new client work.

Initial MLPerf Client working group participants include representatives from AMD, Arm, ASUSTeK, Dell Technologies, Intel, Lenovo, Microsoft, NVIDIA, and Qualcomm Technologies, Inc. among others.

“The time is ripe to bring MLPerf to client systems, as AI is becoming an expected part of computing everywhere,” said David Kanter, Executive Director at MLCommons. “Large language models are a natural and exciting starting point for our MLPerf Client working group. We look forward to teaming up with our members to bring the excellence of MLPerf into client systems and drive new capabilities for the broader community.”

We’re happy to announce that Ramesh Jaladi, Senior Director of Engineering in the IP Performance group at Intel; Yannis Minadakis, Partner GM, Software Development at Microsoft; and Jani Joki, Director of Performance Benchmarking at NVIDIA have agreed to serve as co-chairs of the MLPerf Client working group. Additionally, Vinesh Sukumar, Senior Director, AI/ML Product Management at Qualcomm, has agreed to lead a benchmark development task force within the working group.

“Good measurements are the key to advancing AI acceleration,” said Jaladi. “They allow us to set targets, track progress, and deliver improved end-user experiences in successive product generations. The whole industry benefits when benchmarks are well aligned with customer needs, and that’s the role we expect the MLPerf Client suite to play in consumer computing.”

“Microsoft recognizes the need for quality benchmarking tools tailored to the AI acceleration capabilities of Windows client systems, and we welcome the opportunity to collaborate with the MLCommons community to tackle this challenge,” said Minadakis.

“The MLPerf benchmarks have served as a measuring stick for substantial advances in machine learning performance and efficiency in data center solutions,” said Joki. “We look forward to contributing to the creation of benchmarks that will serve a similar role in client systems.”

“Qualcomm is proud to advance the client ecosystem and looks forward to the innovative benchmarks that this MLPerf Working Group will establish for machine learning,” said Sukumar. “Benchmarks remain an important tool in the development and fine tuning of silicon, and MLCommons’ focus on end-user use cases will be key to on-device AI testing.”

We encourage all interested parties to participate in our effort. For more information on the MLPerf Client working group, including information on how to join and contribute to the benchmarks, please visit the working group page or contact the chairs via email at mlperf-client-chairs@mlcommons.org.

About MLCommons

MLCommons is the world leader in building benchmarks for AI. It is an open engineering consortium with a mission to make machine learning better for everyone through benchmarks and data. The foundation for MLCommons began with the MLPerf benchmark in 2018, which rapidly scaled as a set of industry metrics to measure machine learning performance and promote transparency of machine learning techniques. In collaboration with its 125+ members, global technology providers, academics, and researchers, MLCommons is focused on collaborative engineering work that builds tools for the entire machine learning industry through benchmarks and metrics, public datasets, and best practices.

For additional information regarding MLCommons and details on becoming a Member or Affiliate of the organization, please visit the MLCommons website and contact participation@mlcommons.org.

Contacts

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.