About Cabling Installation & Maintenance

Our mission: Bringing practical business and technical intelligence to today's structured cabling professionals

For more than 30 years, Cabling Installation & Maintenance has provided useful, practical information to professionals responsible for the specification, design, installation and management of structured cabling systems serving enterprise, data center and other environments. These professionals are challenged to stay informed of constantly evolving standards, system-design and installation approaches, product and system capabilities, technologies, as well as applications that rely on high-performance structured cabling systems. Our editors synthesize these complex issues into multiple information products. This portfolio of information products provides concrete detail that improves the efficiency of day-to-day operations, and equips cabling professionals with the perspective that enables strategic planning for networks’ optimum long-term performance.

Throughout our annual magazine, weekly email newsletters and 24/7/365 website, Cabling Installation & Maintenance digs into the essential topics our audience focuses on.

  • Design, Installation and Testing: We explain the bottom-up design of cabling systems, from case histories of actual projects to solutions for specific problems or aspects of the design process. We also look at specific installations using a case-history approach to highlight challenging problems, solutions and unique features. Additionally, we examine evolving test-and-measurement technologies and techniques designed to address the standards-governed and practical-use performance requirements of cabling systems.
  • Technology: We evaluate product innovations and technology trends as they impact a particular product class through interviews with manufacturers, installers and users, as well as contributed articles from subject-matter experts.
  • Data Center: Cabling Installation & Maintenance takes an in-depth look at design and installation workmanship issues as well as the unique technology being deployed specifically for data centers.
  • Physical Security: Focusing on the areas in which security and IT—and the infrastructure for both—interlock and overlap, we pay specific attention to Internet Protocol’s influence over the development of security applications.
  • Standards: Tracking the activities of North American and international standards-making organizations, we provide updates on specifications that are in-progress, looking forward to how they will affect cabling-system design and installation. We also produce articles explaining the practical aspects of designing and installing cabling systems in accordance with the specifications of established standards.

Cabling Installation & Maintenance is published by Endeavor Business Media, a division of EndeavorB2B.

Contact Cabling Installation & Maintenance

Editorial

Patrick McLaughlin

Serena Aburahma

Advertising and Sponsorship Sales

Peter Fretty - Vice President, Market Leader

Tim Carli - Business Development Manager

Brayden Hudspeth - Sales Development Representative

Subscriptions and Memberships

Subscribe to our newsletters and manage your subscriptions

Feedback/Problems

Send a message to our general in-box

 

Quantum Computer With Billions of Qubits Closer After New Spin Control Method Discovered

Discovery of previously unknown effect makes compact, ultra-fast control of spin qubits for quantum computers possible.

Multiple qubits being controlled by the new technique
Multiple qubits being controlled by the new technique

Illustration of how multiple qubits could be controlled using the new 'intrinsic spin-orbit EDSR' process discovered by Diraq [Tony Melov]

SYDNEY - January 13, 2023 - (Newswire.com)

Engineers have discovered a new way of precisely controlling single electrons in quantum dots that run logic gates. What's more, the new technique is less bulky and needs fewer parts - essential to making large-scale silicon quantum computers a reality. The discovery, made by engineers at the quantum computing startup Diraq, is in the journal Nature Nanotechnology

"This was a completely new effect we'd never seen before," said lead author Dr. Will Gilbert, an engineer at Diraq, a UNSW spin-off based at the university's Sydney campus, Australia. "But it quickly became clear that this was a powerful new way of controlling spins in a quantum dot. And that was super exciting."

Logic gates are the basic building block of all computation; they allow 'bits' - or binary digits (0s and 1s) - to work together to process information. However, a quantum bit (or qubit) exists in both of these states at once, known as a 'superposition'. This allows a multitude of computation strategies - some exponentially faster, some simultaneous - that are beyond classical computers. Qubits themselves are made up of 'quantum dots', tiny nanodevices that can trap one or a few electrons. Precise control of the electrons is necessary for computation to occur.

While experimenting with different geometrical combinations of devices just billionths of a meter in size that control quantum dots, and various types of miniscule magnets and antennas that drive their operations, Dr. Tuomo Tanttu stumbled across a strange effect.

"I was trying to really accurately operate a two-qubit gate, iterating through a lot of different devices and slightly different geometries," recalls Dr. Tanttu, an engineer at Diraq. "Then this strange peak popped up. It looked like the rate of rotation for one of the qubits was speeding up, which I'd never seen before."

What he had discovered, the engineers later realised, was a new way of manipulating the quantum state of a single qubit by using electric fields, rather than the magnetic fields used previously. Since the discovery in 2020, Diraq has been perfecting the technique - which has become another tool in their arsenal to fulfil Diraq's ambition of building billions of qubits on a single chip.

"This is a new way to manipulate qubits, and it's less bulky to build - you don't need to fabricate cobalt micro-magnets or an antenna right next to the qubits to generate the control effect," said Gilbert. "There's less clutter."

"This is a gem of new mechanism, which just adds to the trove of proprietary technology we've developed over the past 20 years of research," said Prof Andrew Dzurak, CEO and Founder of Diraq, and Professor in Quantum Engineering at UNSW, who led the team that built the  the first quantum logic gate in silicon in 2015.

"It builds on our work to make quantum computing in silicon a reality, based on essentially the same semiconductor component technology as existing computer chips, rather than relying on exotic materials," he added. "Since it is based on the same CMOS technology as today's computer industry, our approach will make it easier and faster to scale up for commercial production and achieve our goal of fabricating billions of qubits on a single chip."

LINKS FOR MEDIA USE ONLY

  • IMAGES: Photos and illustrations
  • VIDEO: Interviews and animations

Contact Information:
Prof Andrew Dzurak
CEO & Founder, Diraq; and Professor in Quantum Engineering, UNSW
andrew@diraq.com
+61 432 405 434

Dr Tuomo Tanttu
Senior Measurement Engineer, Diraq
tuomo@diraq.com
+61 401 517 972

Wilson da Silva
Media Advisor, Diraq
media@diraq.com
+61 407 907 017

Dr Will Gilbert
CMOS Design and Measurement Engineer
will@diraq.com
+61 432 235 937


Press Release Service by Newswire.com

Original Source: Quantum Computer With Billions of Qubits Closer After New Spin Control Method Discovered
Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.