About Cabling Installation & Maintenance

Our mission: Bringing practical business and technical intelligence to today's structured cabling professionals

For more than 30 years, Cabling Installation & Maintenance has provided useful, practical information to professionals responsible for the specification, design, installation and management of structured cabling systems serving enterprise, data center and other environments. These professionals are challenged to stay informed of constantly evolving standards, system-design and installation approaches, product and system capabilities, technologies, as well as applications that rely on high-performance structured cabling systems. Our editors synthesize these complex issues into multiple information products. This portfolio of information products provides concrete detail that improves the efficiency of day-to-day operations, and equips cabling professionals with the perspective that enables strategic planning for networks’ optimum long-term performance.

Throughout our annual magazine, weekly email newsletters and 24/7/365 website, Cabling Installation & Maintenance digs into the essential topics our audience focuses on.

  • Design, Installation and Testing: We explain the bottom-up design of cabling systems, from case histories of actual projects to solutions for specific problems or aspects of the design process. We also look at specific installations using a case-history approach to highlight challenging problems, solutions and unique features. Additionally, we examine evolving test-and-measurement technologies and techniques designed to address the standards-governed and practical-use performance requirements of cabling systems.
  • Technology: We evaluate product innovations and technology trends as they impact a particular product class through interviews with manufacturers, installers and users, as well as contributed articles from subject-matter experts.
  • Data Center: Cabling Installation & Maintenance takes an in-depth look at design and installation workmanship issues as well as the unique technology being deployed specifically for data centers.
  • Physical Security: Focusing on the areas in which security and IT—and the infrastructure for both—interlock and overlap, we pay specific attention to Internet Protocol’s influence over the development of security applications.
  • Standards: Tracking the activities of North American and international standards-making organizations, we provide updates on specifications that are in-progress, looking forward to how they will affect cabling-system design and installation. We also produce articles explaining the practical aspects of designing and installing cabling systems in accordance with the specifications of established standards.

Cabling Installation & Maintenance is published by Endeavor Business Media, a division of EndeavorB2B.

Contact Cabling Installation & Maintenance

Editorial

Patrick McLaughlin

Serena Aburahma

Advertising and Sponsorship Sales

Peter Fretty - Vice President, Market Leader

Tim Carli - Business Development Manager

Brayden Hudspeth - Sales Development Representative

Subscriptions and Memberships

Subscribe to our newsletters and manage your subscriptions

Feedback/Problems

Send a message to our general in-box

 

Rustam Gilfanov: 30 Years From Now, What Will Clinical Trials Look Like?

New York, New York, United States - 12-10-2022 (PR Distribution™) -

An attempt to look into the future and learn how fast we can develop new drugs.

The crisis of models

Drug development remains a lengthy and costly activity, with a low probability of success. Scientists estimate that average investments in this field of research comprise 1.3 billion dollars per drug, while approximate development time varies from 5.9-7.2 and 13.1 years for non-oncology and oncology medications, respectively.

Out of 5,000 compounds that reach preclinical studies, only five make it to Phase I of clinical trials. The overall approval rate of trialed drugs does not exceed 13.8%. Toxicity and low efficiency are considered the main reasons for clinical trial failures.

Those failures often occur due to poor choice of models: compounds that showed great potential during animal tests turn out to be ineffective when administered to people. That is why one of the main tendencies of the present-day drug design is to thoroughly analyze how adequate a model used for preclinical research (be it a rat or a macaque) is, compared to the human body.

3D models and organs-on-a-chip

One of the ways to bridge the gap between humans and animals is to apply three-dimensional models of human organs that effectively recreate the conditions of a human body thanks to the environment of neighboring cells and the extracellular matrix.

For instance, 3D models help to estimate a more precise dosage during cancer drug trials. External cells get a higher dose than those within the culture, just like cells in a living body (especially in the case of solid tumors).

Still, 3D models are expensive and difficult to design and use. That is why, despite their functional advantages, they are less popular among researchers than two-dimensional versions. But perhaps they will become commonplace three decades from now.

Organs-on-a-chip (OOCs) is a more sophisticated model. Those devices cultivate cell cultures, simulating mechanical and physiological responses of organs and even organ systems, and combine a 3D organ model with a microfluidic platform. Scientists have already developed the OOC models of microvessels, lungs, kidney, intestine, liver, and their combinations.

Omics data in drug design

Some issues associated with preclinical trials can be resolved by omics data — vast pools of molecules (collected on various levels of biological processes) that demonstrate the state of a body or a body part. Omics data are analyzed by bioinformatics, an interdisciplinary field that combines biology, statistics, and computer science.

Omics data are mainly used at the earliest stages of preclinical trials to assess the properties of candidate molecules via the information collected from cells and to get a "mold" of a sick organism to test the impact of various substances.

A classic case of the same-level omics data application involves comparing tissue transcriptomes of healthy and diseased people. Scientists study the gene expressions to detect damaged molecular pathways; after that, they select candidate molecules that can impact the target molecules.

The recent tendency involves analyzing multi-omics data, i.e., the information on peptides, proteins, metabolites, and DNA and RNA sequences. This helps to see the complete picture of a disease, as pathological processes affect multiple cell levels. 

In an ideal case, it will become a standard practice 30 years from now to collect various data arrays at the beginning of preclinical studies to identify disease progression patterns, detect and test potential targets, select and verify candidates, and leave out toxic molecules. All this will make drug design much faster and more personalized.

Held back by the law

Legislation remains a critical factor that influences the speed and implementation of technologies. Present-day approaches to clinical trials must follow detailed protocols to ensure compliance with scientific procedures and prevent potentially dangerous drugs from being released. 

However, it seems obvious the legislation will change in the near future, as more success stories of AI-centered trials appear. By the mid-21st century, more than a few drugs will appear on the market that had in silico tests playing a crucial role in their development. Even now, the latest technologies make the development process faster and cost-saving. Soon, they will make it more effective as well.

***

Summing up, scientists keep coming up with new ways to solve current challenges and confirm the safety and efficiency of new medications. They include both in silico (computer models) and in vitro (3D cell cultures and OOCs) methods. Maybe we will witness the times when the development of a new drug does not make any living creature suffer, and its introduction to the market takes months instead of years.

Rustam Gilfanov - a business angel and Venture Partner of LongeVC.

Media Contacts:

Company Name: Blacklight
Full Name: Vlad
Phone: +7 499 340 33 83
Email Address: Send Email
Website: https://blacklight.ru

For the original news story, please visit https://www.prdistribution.com/news/rustam-gilfanov-30-years-from-now-what-will-clinical-trials-look-like/9408667.

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.