ETFOptimize | High-performance ETF-based Investment Strategies

Quantitative strategies, Wall Street-caliber research, and insightful market analysis since 1998.


ETFOptimize | HOME
Close Window

Battery design from PNNL could help integrate renewables into the grid

The molten salt battery design has the potential to charge and discharge faster than other conventional high-temperature sodium batteries.

A research team led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) demonstrated what they said is a new design for a grid energy storage battery built with low-cost metals sodium and aluminum. 

They said the design provides a pathway towards a “safer and more scalable” stationary energy storage system that could help integrating renewable energy into the nation’s grid.

If it proves able to move from the lab to commercial deployment, the technology could enable low-cost, daily shifting of solar energy into the electrical grid over a 10- to 24-hour period.

The novel molten salt battery design has the potential to charge and discharge faster than other conventional high-temperature sodium batteries, operate at a lower temperature, and maintain an “excellent” energy storage capacity, researchers said.

The battery uses two distinct reactions. The team previously reported a neutral molten salt reaction. Their latest work shows that this neutral molten salt can undergo a further reaction into an acidic molten salt, increasing the battery’s capacity. They said that after 345 charge/discharge cycles at high current, the acidic reaction mechanism retained 82.8% of peak charge capacity.

The energy that a battery can deliver in the discharge process is called its “specific energy density,” which is expressed as watt hour per kilogram (Wh/kg). The researchers speculated that it could result in a practical energy density of up to 100 Wh/kg. 

The new sodium-aluminum battery design allows only sodium (depicted as yellow balls) to move through the solid-state electrolyte to charge the battery. Being constructed of inexpensive Earth-abundant materials such as sodium salts and aluminum wool, a scrap product of aluminum manufacturing, is an advantage. (Credit: Sara Levine | Pacific Northwest National Laboratory)

In comparison, the energy density for lithium-ion batteries used in commercial electronics and electric vehicles is around 170–250 Wh/kg. The researchers said, however, that the new sodium-aluminum battery design has the advantage of being inexpensive and easy to produce in the United States from much more abundant materials.

Scientists worked with U.S.-based Nexceris to assemble and test the battery. Nexceris, through its business Adena Power, supplied a solid-state, sodium-based electrolyte to test the battery’s performance. This battery component allows the sodium ions to travel from the negative (anode) to the positive (cathode) side of the battery as it charges.

One design innovation was to shift the battery from a traditional tubular shape to a flat, scalable shape that can be stacked and expanded as the technology develops from its current coin-sized battery to a larger grid-scale demonstration size.

The flat cell design also is expected to allow cell capacity to grow by using a thicker cathode. Researchers used the design to demonstrate a triple capacity cell with sustained discharge of 28.2-hours under laboratory conditions.

Researchers said the battery is a variation of a sodium-metal halide battery. A similar design using a nickel cathode as part of the system was shown to be effective at commercial scale and is commercially available.

Data & News supplied by www.cloudquote.io
Stock quotes supplied by Barchart
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms and Conditions.


 

IntelligentValue Home
Close Window

DISCLAIMER

All content herein is issued solely for informational purposes and is not to be construed as an offer to sell or the solicitation of an offer to buy, nor should it be interpreted as a recommendation to buy, hold or sell (short or otherwise) any security.  All opinions, analyses, and information included herein are based on sources believed to be reliable, but no representation or warranty of any kind, expressed or implied, is made including but not limited to any representation or warranty concerning accuracy, completeness, correctness, timeliness or appropriateness. We undertake no obligation to update such opinions, analysis or information. You should independently verify all information contained on this website. Some information is based on analysis of past performance or hypothetical performance results, which have inherent limitations. We make no representation that any particular equity or strategy will or is likely to achieve profits or losses similar to those shown. Shareholders, employees, writers, contractors, and affiliates associated with ETFOptimize.com may have ownership positions in the securities that are mentioned. If you are not sure if ETFs, algorithmic investing, or a particular investment is right for you, you are urged to consult with a Registered Investment Advisor (RIA). Neither this website nor anyone associated with producing its content are Registered Investment Advisors, and no attempt is made herein to substitute for personalized, professional investment advice. Neither ETFOptimize.com, Global Alpha Investments, Inc., nor its employees, service providers, associates, or affiliates are responsible for any investment losses you may incur as a result of using the information provided herein. Remember that past investment returns may not be indicative of future returns.

Copyright © 1998-2017 ETFOptimize.com, a publication of Optimized Investments, Inc. All rights reserved.