About Cabling Installation & Maintenance

Our mission: Bringing practical business and technical intelligence to today's structured cabling professionals

For more than 30 years, Cabling Installation & Maintenance has provided useful, practical information to professionals responsible for the specification, design, installation and management of structured cabling systems serving enterprise, data center and other environments. These professionals are challenged to stay informed of constantly evolving standards, system-design and installation approaches, product and system capabilities, technologies, as well as applications that rely on high-performance structured cabling systems. Our editors synthesize these complex issues into multiple information products. This portfolio of information products provides concrete detail that improves the efficiency of day-to-day operations, and equips cabling professionals with the perspective that enables strategic planning for networks’ optimum long-term performance.

Throughout our annual magazine, weekly email newsletters and 24/7/365 website, Cabling Installation & Maintenance digs into the essential topics our audience focuses on.

  • Design, Installation and Testing: We explain the bottom-up design of cabling systems, from case histories of actual projects to solutions for specific problems or aspects of the design process. We also look at specific installations using a case-history approach to highlight challenging problems, solutions and unique features. Additionally, we examine evolving test-and-measurement technologies and techniques designed to address the standards-governed and practical-use performance requirements of cabling systems.
  • Technology: We evaluate product innovations and technology trends as they impact a particular product class through interviews with manufacturers, installers and users, as well as contributed articles from subject-matter experts.
  • Data Center: Cabling Installation & Maintenance takes an in-depth look at design and installation workmanship issues as well as the unique technology being deployed specifically for data centers.
  • Physical Security: Focusing on the areas in which security and IT—and the infrastructure for both—interlock and overlap, we pay specific attention to Internet Protocol’s influence over the development of security applications.
  • Standards: Tracking the activities of North American and international standards-making organizations, we provide updates on specifications that are in-progress, looking forward to how they will affect cabling-system design and installation. We also produce articles explaining the practical aspects of designing and installing cabling systems in accordance with the specifications of established standards.

Cabling Installation & Maintenance is published by Endeavor Business Media, a division of EndeavorB2B.

Contact Cabling Installation & Maintenance

Editorial

Patrick McLaughlin

Serena Aburahma

Advertising and Sponsorship Sales

Peter Fretty - Vice President, Market Leader

Tim Carli - Business Development Manager

Brayden Hudspeth - Sales Development Representative

Subscriptions and Memberships

Subscribe to our newsletters and manage your subscriptions

Feedback/Problems

Send a message to our general in-box

 

Argonne's Virtual Models Pave the Way for Advanced Nuclear Reactors

Digital twins are virtual replicas of real-world systems, offering transformative potential across various fields. At the U.S. Department of Energy’s (DOE) Argonne National Laboratory, researchers have developed digital twin technology to enhance the efficiency, reliability, and safety of nuclear reactors. This technology leverages advanced computer models and artificial intelligence (AI) to predict reactor behavior, aiding operators in making real-time decisions.

According to Rui Hu, an Argonne principal nuclear engineer, this digital twin technology marks a significant advancement in understanding and managing advanced nuclear reactors. It enables rapid and accurate predictions and responses to changes in reactor conditions.

Digital twins allow scientists to monitor and predict the behavior of small modular reactors and microreactors under different conditions. The Argonne team applied their methodology to create digital twins for two types of nuclear reactors: the now-inactive Experimental Breeder Reactor II (EBR-II) and a new type, the generic Fluoride-salt-cooled High-temperature Reactor (gFHR). The EBR-II digital twin served as a test case to validate the simulation models.

The core of this digital twin technology is graph neural networks (GNNs), a type of AI that processes data structured as graphs, representing interconnected components. GNNs excel at recognizing complex patterns and connections, offering powerful insights into systems where relationships are crucial. By preserving the layout of reactor systems and embedding fundamental physics laws, GNN-based digital twins provide a robust and accurate replica of real systems.

The researchers utilized the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science user facility, to train the GNN and perform uncertainty quantification, which involves identifying and reducing uncertainty in models.

GNN-based digital twins are significantly faster than traditional simulations, quickly predicting reactor behavior during various scenarios, such as changes in power output or cooling system performance. They achieve this by training on simulation data from Argonne’s System Analysis Module (SAM), a tool for analyzing advanced nuclear reactors. The trained model can make accurate predictions based on limited real-time sensor data, supporting better planning and decision-making, and potentially reducing maintenance and operating costs.

Additionally, digital twins can continuously monitor reactors to detect anomalies. If unusual behavior is detected, the system can suggest changes to maintain safety and smooth operation.

Argonne’s digital twin technology offers numerous advantages over traditional methods, providing more reliable predictions by understanding how all reactor parts work together. It can be used for emergency planning, informed decision-making, and potentially autonomous reactor operation in the future. This innovation represents a significant step forward in the development and deployment of advanced nuclear reactors, ensuring they operate safely, reliably, and efficiently while reducing costs and extending component life.

“Our digital twin technology introduces a significant step toward understanding and managing advanced nuclear reactors, enabling us to predict and respond to changes with the required speed and accuracy.” — Rui Hu, Argonne principal nuclear engineer

Contacts

Christopher J. Kramer

Head of Media Relations

Argonne National Laboratory

Office: 630.252.5580

Email: media@anl.gov

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.