Laser Focus World is an industry bedrock—first published in 1965 and still going strong. We publish original articles about cutting-edge advances in lasers, optics, photonics, sensors, and quantum technologies, as well as test and measurement, and the shift currently underway to usher in the photonic integrated circuits, optical interconnects, and copackaged electronics and photonics to deliver the speed and efficiency essential for data centers of the future.

Our 80,000 qualified print subscribers—and 130,000 12-month engaged online audience—trust us to dive in and provide original journalism you won’t find elsewhere covering key emerging areas such as laser-driven inertial confinement fusion, lasers in space, integrated photonics, chipscale lasers, LiDAR, metasurfaces, high-energy laser weaponry, photonic crystals, and quantum computing/sensors/communications. We cover the innovations driving these markets.

Laser Focus World is part of Endeavor Business Media, a division of EndeavorB2B.

Laser Focus World Membership

Never miss any articles, videos, podcasts, or webinars by signing up for membership access to Laser Focus World online. You can manage your preferences all in one place—and provide our editorial team with your valued feedback.

Magazine Subscription

Can you subscribe to receive our print issue for free? Yes, you sure can!

Newsletter Subscription

Laser Focus World newsletter subscription is free to qualified professionals:

The Daily Beam

Showcases the newest content from Laser Focus World, including photonics- and optics-based applications, components, research, and trends. (Daily)

Product Watch

The latest in products within the photonics industry. (9x per year)

Bio & Life Sciences Product Watch

The latest in products within the biophotonics industry. (4x per year)

Laser Processing Product Watch

The latest in products within the laser processing industry. (3x per year)

Get Published!

If you’d like to write an article for us, reach out with a short pitch to Sally Cole Johnson: [email protected]. We love to hear from you.

Photonics Hot List

Laser Focus World produces a video newscast that gives a peek into what’s happening in the world of photonics.

Following the Photons: A Photonics Podcast

Following the Photons: A Photonics Podcast dives deep into the fascinating world of photonics. Our weekly episodes feature interviews and discussions with industry and research experts, providing valuable perspectives on the issues, technologies, and trends shaping the photonics community.

Editorial Advisory Board

  • Professor Andrea M. Armani, University of Southern California
  • Ruti Ben-Shlomi, Ph.D., LightSolver
  • James Butler, Ph.D., Hamamatsu
  • Natalie Fardian-Melamed, Ph.D., Columbia University
  • Justin Sigley, Ph.D., AmeriCOM
  • Professor Birgit Stiller, Max Planck Institute for the Science of Light, and Leibniz University of Hannover
  • Professor Stephen Sweeney, University of Glasgow
  • Mohan Wang, Ph.D., University of Oxford
  • Professor Xuchen Wang, Harbin Engineering University
  • Professor Stefan Witte, Delft University of Technology

Machine learning used to optimise polymer production



TSUKUBA, Japan, Dec 2, 2024 - (ACN Newswire) - Polymers, such as plastics, are essential in many aspects of life and industry, from packaging and cars to medical devices and optic fibres. Their value comes from diverse properties that are largely determined by their monomers – the single chemical units – that make up a polymer. Unfortunately, it can be challenging to control the chemical behaviour of monomers during manufacture to achieve a desired outcome.

The flow synthesis reactor with two bottles containing a monomer, initiator and solvent mixed using a micromixer. The synthesis is controlled with AI-based design of experimental conditions such as the temperature and a flow rate.
The flow synthesis reactor with two bottles containing a monomer, initiator and solvent mixed using a micromixer. The synthesis is controlled with AI-based design of experimental conditions such as the temperature and a flow rate.

Now, a team of researchers led by Professor Mikiya Fujii of the Nara Institute of Science and Technology in Japan have used machine learning to mathematically model the polymerization process and reduce the need for time-consuming and expensive experimentation. Their results have been published in the journal Science and Technology of Advanced Materials: Methods.

Machine learning algorithms need data, so the researchers designed a polymerization process that would quickly and efficiently generate experimental data to feed into the mathematical model. The target molecule was a styrene-methyl methacrylate co-polymer, which was made by mixing styrene and methyl methacrylate monomers, both already dissolved in a solvent with an added initiator substance, then heating them in a water bath.

The team also used a method called flow synthesis, in which the two monomer solutions are mixed and heated in a constant flow. This allows for better mixing, more efficient heating, and more precise control of heating time and flow rate, which makes it ideal for use with machine learning.

The modelling evaluated the effect of five key variables in the polymerization process: the concentration of the initiator, the ratio of solvent to monomer, the proportion of styrene, the temperature of the reaction, and the time spent in the water bath. The goal was to have an end product with as close to 50% styrene as possible.

Once enough experimental data was available, the machine learning process took only five cycles of calculation to achieve the ideal proportion of styrene to methyl methacrylate. The results showed that the key was a lower temperature and longer time in the water bath, as well as lowering the relative concentration of the monomer in the solvent. The researchers were surprised to discover that the solvent concentration was just as important as the proportion of monomers going into the mix.

“Our results demonstrate that machine learning not only can explicitly reveal what humans may have implicitly taken for granted but can also provide new insights that weren’t recognized before,” Professor Mikiya Fujii says. “The use of machine learning in chemistry could open the door for smarter, greener manufacturing processes with reduced waste and energy consumption.”

Further information
Mikiya Fujii
Nara Institute of Science and Technology
Email: fujii.mikiya@ms.naist.jp 

Paper: https://doi.org/10.1080/27660400.2024.2425178

About Science and Technology of Advanced Materials: Methods (STAM-M)

STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming. https://www.tandfonline.com/STAM-M 

Dr Yasufumi Nakamichi
STAM Publishing Director
Email: NAKAMICHI.Yasufumi@nims.go.jp 

Press release distributed by Asia Research News for Science and Technology of Advanced Materials.

]]>

Source: Science and Technology of Advanced Materials

Copyright 2024 ACN Newswire . All rights reserved.

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.