Laser Focus World is an industry bedrock—first published in 1965 and still going strong. We publish original articles about cutting-edge advances in lasers, optics, photonics, sensors, and quantum technologies, as well as test and measurement, and the shift currently underway to usher in the photonic integrated circuits, optical interconnects, and copackaged electronics and photonics to deliver the speed and efficiency essential for data centers of the future.

Our 80,000 qualified print subscribers—and 130,000 12-month engaged online audience—trust us to dive in and provide original journalism you won’t find elsewhere covering key emerging areas such as laser-driven inertial confinement fusion, lasers in space, integrated photonics, chipscale lasers, LiDAR, metasurfaces, high-energy laser weaponry, photonic crystals, and quantum computing/sensors/communications. We cover the innovations driving these markets.

Laser Focus World is part of Endeavor Business Media, a division of EndeavorB2B.

Laser Focus World Membership

Never miss any articles, videos, podcasts, or webinars by signing up for membership access to Laser Focus World online. You can manage your preferences all in one place—and provide our editorial team with your valued feedback.

Magazine Subscription

Can you subscribe to receive our print issue for free? Yes, you sure can!

Newsletter Subscription

Laser Focus World newsletter subscription is free to qualified professionals:

The Daily Beam

Showcases the newest content from Laser Focus World, including photonics- and optics-based applications, components, research, and trends. (Daily)

Product Watch

The latest in products within the photonics industry. (9x per year)

Bio & Life Sciences Product Watch

The latest in products within the biophotonics industry. (4x per year)

Laser Processing Product Watch

The latest in products within the laser processing industry. (3x per year)

Get Published!

If you’d like to write an article for us, reach out with a short pitch to Sally Cole Johnson: [email protected]. We love to hear from you.

Photonics Hot List

Laser Focus World produces a video newscast that gives a peek into what’s happening in the world of photonics.

Following the Photons: A Photonics Podcast

Following the Photons: A Photonics Podcast dives deep into the fascinating world of photonics. Our weekly episodes feature interviews and discussions with industry and research experts, providing valuable perspectives on the issues, technologies, and trends shaping the photonics community.

Editorial Advisory Board

  • Professor Andrea M. Armani, University of Southern California
  • Ruti Ben-Shlomi, Ph.D., LightSolver
  • James Butler, Ph.D., Hamamatsu
  • Natalie Fardian-Melamed, Ph.D., Columbia University
  • Justin Sigley, Ph.D., AmeriCOM
  • Professor Birgit Stiller, Max Planck Institute for the Science of Light, and Leibniz University of Hannover
  • Professor Stephen Sweeney, University of Glasgow
  • Mohan Wang, Ph.D., University of Oxford
  • Professor Xuchen Wang, Harbin Engineering University
  • Professor Stefan Witte, Delft University of Technology

Genetics proposes, epigenetics disposes: how our approach to human health changes in the 21st century and how CRISPR-Cas is involved

Los Angeles, California, United States - 06-16-2022 (PR Distribution™) -

“Change your lifestyle — and you will initiate a chain of biochemical changes that will imperceptibly but steadily help you and, possibly, all your descendants until the end of their life on Earth." This quote belongs to German neurophysiologist P. Spork, who considers epigenetics the breakthrough science that will spearhead progress in the 21st century.

Epigenetics — genetics’ little sister

The Greek prefix epi- means “over” or “upon”; in other words, we are dealing with something that goes above genetics. It is hardly possible to overestimate the role epigenetic mechanisms play in embryonic development: specialized cells of an adult body grow from embryonic cells sharing the same DNA. Scientists think that genetic activity responds to external stimuli, such as stress levels, physical activities, and diurnal rhythms.

The CRISPR/Cas panacea

In case epigenetics has already done its dirty deed, it is still possible to use the “molecular scissors” of the CRISPR/Cas gene editing system, first described by Japanese scientist Y. Ishino.

In nature, CRISPR/Cas is the adaptive immune system used by bacteria to  counter various pathogens. It has the following work principle: once a bacterium gets attacked by a virus, its specialized Cas proteins quickly cut out parts of the virus and insert them into the CRISPR cassette in a certain order. The purpose of this process is to “learn the face of the enemy” and develop a specialized immune response.

Soon, scientists started to hope they could use the CRISPR-Cas9 system of Streptococcus bacteria to edit genomes of other organisms and fight genetic disorders. CRISPR-Cas9 is already used for treating various diseases. In spring 2020, scientists reported on the first intraretinal injection of a modified virus to a patient suffering from Leber congenital amaurosis (a disease that causes blindness). The new method involves point base editing of RPE65 gene mutations [8]. Two years ago, The New England Journal of Medicine published the results of the first successful editing of ?-Thalassemia sickle cell anemia mutations.

For discovering the CRISPR/Cas9 “genetic scissors” and their potential for point editing, E. Charpentier (France) and J. Doudna (USA) were awarded the Nobel Prize in Chemistry in 2020.

Big Data in science: pros and cons

It seems that genetic or epigenetic research can hardly be imagined without information technologies. We know bioinformatics methods are commonly used in computational epigenetics in addition to experimental studies; given the explosive growth of epigenomic data sets, computational methods are starting to play a greater role.

For instance, experimental ChIP-on-chip, ChIP-seq, and bisulfite sequencing methods are applied for genome-wide mapping of epigenetic data. They all generate large amounts of data and demand effective ways of processing and quality control. On the one hand, big data is of immense help to scientists. Back in the day, complete genome sequencing took years and required millions of dollars. The next-generation sequencing method can provide the same results for $1200 within 24 hours.

On the other hand, some experts have a somewhat skeptical attitude to big data, as researchers simply cannot keep up with the enormous volumes of information. Besides, the use of supercomputers overhauls the work of scientists. In 2015, Italian biologist F. Mazzocchi noted that classical scientific methods are getting outdated in the age of data and supercomputing, with theories, hypotheses, and discussions becoming obsolete. Scientists no longer search for models, while correlations offered by big data are replacing causality. M. Frické warns his colleagues against putting too much trust in the machine. He claims that “data-driven science will or would find many spurious connections. Data-driven science could easily lead to apophenia and a wild outbreak of hornswoggling”.

Only time will tell how justified these concerns are. Yet one thing is already crystal clear: there will be no going back to the old ways because treatment of the most complex diseases is on the verge of a breakthrough.

About the Author

Rustam Gilfanov is an IT entrepreneur and a venture partner of the LongeVC fund.

Media Contacts:

Company Name: Blacklight agency
Full Name: Vlad
Phone: +74993403383
Email Address: Send Email
Website: https://blacklight.ru

For the original news story, please visit https://www.prdistribution.com/news/genetics-proposes-epigenetics-disposes-how-our-approach-to-human-health-changes-in-the-21st-century-and-how-crispr-cas-is-involved/9190319.

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.