ETFOptimize | High-performance ETF-based Investment Strategies

Quantitative strategies, Wall Street-caliber research, and insightful market analysis since 1998.


ETFOptimize | HOME
Close Window

bit.bio further expands ioCells™️ range with early access launch of ioMotor Neurons™️ for research and drug discovery in diseases such as amyotrophic lateral sclerosis (ALS)

  • A reliable supply of consistent and physiologically relevant motor neurons is fundamental to the study and screening of potential treatments for motor neuron diseases
  • ioMotor Neurons also offer an alternative to animals for neurotoxicity testing in the development of therapeutic products and consumer cosmetics procedures
  • ioMotor Neurons are ready for experimentation within four days; they express lower motor neuron markers and display key functional activity

bit.bio, the company coding human cells for novel cures, has launched ioMotor Neurons as its 12th ioCells product this year. This takes the total number of products in the ioCells range - human cells for research and drug discovery - to 20 products, including wild type, CRISPR-ready and disease model cells. The launch of ioMotor Neurons also follows the recent opening of bit.bio’s new manufacturing and automation laboratories by the UK’s Minister for Science, Research and Innovation.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20231206868118/en/

ioMotor Neurons (Photo: Business Wire)

ioMotor Neurons (Photo: Business Wire)

Motor neurons connect to muscles, which they control via electrical impulses. Damage or death of motor neurons can lead to a devastating group of conditions called Motor Neuron Diseases (MNDs). These lead to muscle wasting and weakness and problems with breathing and swallowing.

ALS is one of the most common MNDs, and current estimates indicate it affects more than 200,000 people worldwide.1 Patients progressively lose motor function and eventually suffer fatal paralysis. The development of therapies for MNDs has been compromised by the limited translatability of animal models and the long, inconsistent and difficult-to-scale differentiation protocols for creating motor neurons from induced pluripotent stem cells (iPSCs).

bit.bio’s ioMotor Neurons are designed to address these challenges. ioMotor Neurons are precision reprogrammed from human iPSCs with bit.bio’s opti-ox™ technology, leading to unparallelled biological consistency and scalability. The cells are easy to culture and ready to use in days. They express important lower motor neuron markers and display key functional activity.

Dr Mark Kotter, CEO and Founder of bit.bio said:

“bit.bio democratises access to human cells. ioMotor Neurons are the12th ioCells product we have launched in 2023, demonstrating the unprecedented pace at which bit.bio is able to bring new iPSC-derived cell products to market. This latest addition to our ioCells portfolio will enable scientists to understand and potentially cure devastating motor neuron diseases, a field which is eagerly awaiting treatments for the thousands of patients with conditions such as ALS. We are excited to see the breakthroughs scientists are going to make with our new ioMotor Neurons.”

ioMotor Neurons could also be used to develop in-vitro models for neurotoxicity testing and toxicology screening for therapeutic products development, such as therapeutic proteins and consumer cosmetics procedures. This offers an important alternative to animal testing.

Dr Farah Patell-Socha, VP Research Products at bit.bio, said:

“This launch represents a significant further stride toward our commitment to providing a robust and comprehensive CNS cell portfolio to advancing neurodegenerative research and drug discovery. ioMotor Neurons are an important part of our ALS toolkit that can now be incorporated into motor neuron disease research and early drug discovery workflows in ways that were not previously possible. These highly-defined cells will serve as the basis for the development of additional derivative products for the scientific community, including disease models for ALS which will be available in 2024.”

ioMotor Neurons are now available for early access on the bit.bio website: https://www.bit.bio/products/nerve-cells/motor-neurons-wild-type/ioea1027

Notes to editors

References

1. Estimated incidence of ALS: https://www.nature.com/articles/ncomms12408?origin=ppub

About bit.bio

bit.bio is a synthetic biology company focused on human cells that is advancing medicine (UN SDG9) and enabling curative treatments (UN SDG3). The company does this by industrialising the manufacture of human cells and making them more accessible. The company was spun out of the University of Cambridge in 2016 and has since raised approximately $200m from investors such as Arch Venture, Foresite Capital, Milky Way, Charles River Laboratories, National Resilience, Tencent, Verition Fund and Puhua Capital.

bit.bio’s opti-ox™ precision cell programming and manufacturing technology enables conversion of induced pluripotent stem cells (iPSCs) into any desired human cell type in a single step. This can be achieved within days and at industrial scale, while maintaining exceptional purity and unparalleled consistency.

Our discovery platform extends this approach to any desired cell type by identifying the transcription factor combinations that define cell states (including identity, cell subtype identity, maturity) using high throughput screens and advanced data analysis. We believe that opti-ox can revolutionise regenerative medicine similarly to how CRISPR is unlocking gene therapy.

bit.bio’s cell therapy pipeline, based on txCells™, is focused on serious diseases that lack effective treatments. Our current therapeutic development areas include metabolism and endocrinology, immunology and neurology. Our lead candidate, bbHEP01 based on txHepatocytes, is in development as a treatment for patients suffering from acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) and is expected to enter clinical development in 2025. Complementing our internal pipeline, we have a collaboration with BlueRock Therapeutics (a wholly owned independently operated subsidiary of Bayer AG) focused on regulatory T cell (Treg) based cell therapies.

In addition, our extensive ioCells™ research cell product portfolio, which includes wild type, disease model human cells and CRISPR-ready cells, is opening up new possibilities for studying human biology and developing new medicines in both research and high throughput and high content drug discovery.

For more information, please visit www.bit.bio

Contacts

Recent Quotes

View More
Symbol Price Change (%)
AMZN  217.14
+0.00 (0.00%)
AAPL  266.25
+0.00 (0.00%)
AMD  206.02
+0.00 (0.00%)
BAC  51.00
+0.00 (0.00%)
GOOG  289.98
+0.00 (0.00%)
META  589.15
+0.00 (0.00%)
MSFT  478.43
+0.00 (0.00%)
NVDA  180.64
+0.00 (0.00%)
ORCL  210.69
+0.00 (0.00%)
TSLA  395.23
+0.00 (0.00%)
Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the Privacy Policy and Terms Of Service.


 

IntelligentValue Home
Close Window

DISCLAIMER

All content herein is issued solely for informational purposes and is not to be construed as an offer to sell or the solicitation of an offer to buy, nor should it be interpreted as a recommendation to buy, hold or sell (short or otherwise) any security.  All opinions, analyses, and information included herein are based on sources believed to be reliable, but no representation or warranty of any kind, expressed or implied, is made including but not limited to any representation or warranty concerning accuracy, completeness, correctness, timeliness or appropriateness. We undertake no obligation to update such opinions, analysis or information. You should independently verify all information contained on this website. Some information is based on analysis of past performance or hypothetical performance results, which have inherent limitations. We make no representation that any particular equity or strategy will or is likely to achieve profits or losses similar to those shown. Shareholders, employees, writers, contractors, and affiliates associated with ETFOptimize.com may have ownership positions in the securities that are mentioned. If you are not sure if ETFs, algorithmic investing, or a particular investment is right for you, you are urged to consult with a Registered Investment Advisor (RIA). Neither this website nor anyone associated with producing its content are Registered Investment Advisors, and no attempt is made herein to substitute for personalized, professional investment advice. Neither ETFOptimize.com, Global Alpha Investments, Inc., nor its employees, service providers, associates, or affiliates are responsible for any investment losses you may incur as a result of using the information provided herein. Remember that past investment returns may not be indicative of future returns.

Copyright © 1998-2017 ETFOptimize.com, a publication of Optimized Investments, Inc. All rights reserved.