ETFOptimize | High-performance ETF-based Investment Strategies

Quantitative strategies, Wall Street-caliber research, and insightful market analysis since 1998.


ETFOptimize | HOME
Close Window

Unlocking Greater Value in Carbon Markets

Cambridge, MA, Dec. 18, 2024 (GLOBE NEWSWIRE) -- Many governments are addressing climate change by managing carbon emissions through a system of permits, sold in auctions at a uniform price — or the lowest winning bid, which represents the price that all winning bidders typically pay for each unit. New research by MIT Sloan School of Management associate professor Negin Golrezaei suggests that switching to a pay-as-bid auction, where each buyer pays the price they bid, could boost revenue and provide stronger incentives for companies to invest in greener technologies.

Learning in Repeated Multi-Unit Pay-As-Bid Auctions,” published in the academic journal Manufacturing & Service Operations Management, and co-written with MIT Operations Research Center PhD student Rigel Galgana, is the first to explore how participants can learn optimal bidding strategies in multi-unit auctions over time, without prior knowledge of competitors’ strategies or values. The paper builds on Golrezaei’s earlier paper “Learning and Collusion in Multi-unit Auctions.”

“The social cost of carbon is estimated at $190 per ton by the U.S. Environmental Protection Agency, yet auction prices often fall far short of this figure,” said Golrezaei. “By adopting a market-driven approach like pay-as-bid auctions, we could better align permit prices with the true societal cost of carbon, making carbon markets more effective in driving emissions reductions.” 

A key contribution of Golrezaei’s research is the development of an adaptable algorithm that addresses market dynamics. Until now, effectively evaluating the market under pay-as-bid auctions has been difficult due to the repeated interactions among participants — including power generation companies, industrial facilities, and the aviation sector — which influences market dynamics, revenue, and overall welfare. Repeated interactions can also create opportunities for collusion further complicating the design of these markets. This novel data-driven approach overcomes these challenges, enabling companies to learn how to bid effectively in this competitive environment.

“Our algorithm not only helps companies refine their bidding strategies but also offers valuable insights into the dynamics of the auction itself— how each bid is influenced by and influences others. Understanding these dynamics is crucial for assessing the potential impact of pay-as-bid auctions in carbon markets,” said Golrezaei. 

“The principles behind the pay-as-bid research apply far beyond carbon markets. Multi-unit auctions drive billions of dollars across sectors ranging from electricity to telecommunications. By improving pricing accuracy and market efficiency, the principles from the study could lead to better outcomes in these sectors as well,” she continued.

Golrezaei noted that these improvements are also evident in the online advertising market, which has shifted from second price (single-unit version of uniform price auctions) auctions to first price (single-unit version of pay-as-bid auctions) auctions, resulting in increased revenues.

“Our work introduces data-driven algorithms that empower fair, efficient bidding across diverse industries, viewing multi-unit auctions as dynamic and adaptive systems,” said Golrezaei.



Attachment


Casey Bayer
MIT Sloan School of Management
914.584.9095
bayerc@mit.edu

Patricia Favreau
MIT Sloan School of Management
617.595.8533
pfavreau@mit.edu

Matthew Aliberti
MIT Sloan School of Management
781.558.3436 
malib@mit.edu

Recent Quotes

View More
Symbol Price Change (%)
AMZN  220.69
+3.55 (1.63%)
AAPL  271.49
+5.24 (1.97%)
AMD  203.78
-2.24 (-1.09%)
BAC  51.56
+0.56 (1.10%)
GOOG  299.65
+9.67 (3.33%)
META  594.25
+5.10 (0.87%)
MSFT  472.12
-6.31 (-1.32%)
NVDA  178.88
-1.76 (-0.97%)
ORCL  198.76
-11.93 (-5.66%)
TSLA  391.09
-4.14 (-1.05%)
Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the Privacy Policy and Terms Of Service.


 

IntelligentValue Home
Close Window

DISCLAIMER

All content herein is issued solely for informational purposes and is not to be construed as an offer to sell or the solicitation of an offer to buy, nor should it be interpreted as a recommendation to buy, hold or sell (short or otherwise) any security.  All opinions, analyses, and information included herein are based on sources believed to be reliable, but no representation or warranty of any kind, expressed or implied, is made including but not limited to any representation or warranty concerning accuracy, completeness, correctness, timeliness or appropriateness. We undertake no obligation to update such opinions, analysis or information. You should independently verify all information contained on this website. Some information is based on analysis of past performance or hypothetical performance results, which have inherent limitations. We make no representation that any particular equity or strategy will or is likely to achieve profits or losses similar to those shown. Shareholders, employees, writers, contractors, and affiliates associated with ETFOptimize.com may have ownership positions in the securities that are mentioned. If you are not sure if ETFs, algorithmic investing, or a particular investment is right for you, you are urged to consult with a Registered Investment Advisor (RIA). Neither this website nor anyone associated with producing its content are Registered Investment Advisors, and no attempt is made herein to substitute for personalized, professional investment advice. Neither ETFOptimize.com, Global Alpha Investments, Inc., nor its employees, service providers, associates, or affiliates are responsible for any investment losses you may incur as a result of using the information provided herein. Remember that past investment returns may not be indicative of future returns.

Copyright © 1998-2017 ETFOptimize.com, a publication of Optimized Investments, Inc. All rights reserved.