Laser Focus World is an industry bedrock—first published in 1965 and still going strong. We publish original articles about cutting-edge advances in lasers, optics, photonics, sensors, and quantum technologies, as well as test and measurement, and the shift currently underway to usher in the photonic integrated circuits, optical interconnects, and copackaged electronics and photonics to deliver the speed and efficiency essential for data centers of the future.

Our 80,000 qualified print subscribers—and 130,000 12-month engaged online audience—trust us to dive in and provide original journalism you won’t find elsewhere covering key emerging areas such as laser-driven inertial confinement fusion, lasers in space, integrated photonics, chipscale lasers, LiDAR, metasurfaces, high-energy laser weaponry, photonic crystals, and quantum computing/sensors/communications. We cover the innovations driving these markets.

Laser Focus World is part of Endeavor Business Media, a division of EndeavorB2B.

Laser Focus World Membership

Never miss any articles, videos, podcasts, or webinars by signing up for membership access to Laser Focus World online. You can manage your preferences all in one place—and provide our editorial team with your valued feedback.

Magazine Subscription

Can you subscribe to receive our print issue for free? Yes, you sure can!

Newsletter Subscription

Laser Focus World newsletter subscription is free to qualified professionals:

The Daily Beam

Showcases the newest content from Laser Focus World, including photonics- and optics-based applications, components, research, and trends. (Daily)

Product Watch

The latest in products within the photonics industry. (9x per year)

Bio & Life Sciences Product Watch

The latest in products within the biophotonics industry. (4x per year)

Laser Processing Product Watch

The latest in products within the laser processing industry. (3x per year)

Get Published!

If you’d like to write an article for us, reach out with a short pitch to Sally Cole Johnson: [email protected]. We love to hear from you.

Photonics Hot List

Laser Focus World produces a video newscast that gives a peek into what’s happening in the world of photonics.

Following the Photons: A Photonics Podcast

Following the Photons: A Photonics Podcast dives deep into the fascinating world of photonics. Our weekly episodes feature interviews and discussions with industry and research experts, providing valuable perspectives on the issues, technologies, and trends shaping the photonics community.

Editorial Advisory Board

  • Professor Andrea M. Armani, University of Southern California
  • Ruti Ben-Shlomi, Ph.D., LightSolver
  • James Butler, Ph.D., Hamamatsu
  • Natalie Fardian-Melamed, Ph.D., Columbia University
  • Justin Sigley, Ph.D., AmeriCOM
  • Professor Birgit Stiller, Max Planck Institute for the Science of Light, and Leibniz University of Hannover
  • Professor Stephen Sweeney, University of Glasgow
  • Mohan Wang, Ph.D., University of Oxford
  • Professor Xuchen Wang, Harbin Engineering University
  • Professor Stefan Witte, Delft University of Technology

Polishing and Grinding Properties of Nano Silicon Carbide

Nano Silicon carbide powder (HW-D507) is produced by smelting quartz sand, petroleum coke (or coal coke), and wood chips as raw materials through high temperature in resistance furnaces. Silicon carbide also exists in nature as a rare mineral — named as moissanite. In high technology refractory raw materials such as C, N, B and other non-oxide , silicon carbide is the most widely used and the most economical one.

β-SiC powder has properties such as high chemical stability, high hardness, high thermal conductivity, low thermal expansion coefficient and so on. Therefore, it has excellent performances such as anti-abrasion, high temperature resistance and thermal shock resistance. Silicon carbide can be made into abrasive powders or grinding heads for high-precision grinding and polishing of materials such as metals, ceramics, glass and plastics. Compared with traditional abrasive materials, SiC has high wear resistance, hardness and thermal stability, which can effectively improve processing accuracy and efficiency. In addition, it has excellent chemical resistance and high-temperature stability, so it has a wide range of application prospects in various fields.

SiC can be used to prepare polishing materials, which has a wide range of applications in mechanical engineering, electronic devices, optical devices and other fields. This polishing material has excellent properties such as high hardness, high wear resistance and high chemical stability, which can accomplish high quality polishing and grinding operations. At present, the main grinding and polishing materials is diamond in the market, and its price is tens or even hundreds of times of β-Sic. However, the grinding effect of β-Sic in many fields is no less than diamond. Compared with other abrasives of the same particle size, β-Sic has the highest processing efficiency and cost performance.

As polishing and grinding material, nano silicon carbide also has excellent low friction coefficient and excellent optical properties, which are widely used in microelectronic processing and optoelectronic device manufacturing. Nano silicon carbide polishing and grinding materials can achieve extremely high polishing capabilities, while controlling and reducing surface roughness and morphology, improving the surface quality of the material and the performance of the product.

In resin-based diamond tools, nano silicon carbide is an important additive that can effectively improve the wear resistance, cutting and polishing performance of resin-based diamond tools. Meanwhile, the small size and good dispersion of SiC can improve the processing performance of resin-based diamond tools by mixing well with resin-based materials. The process of nano SiC for manufacturing resin-based diamond tools is simple and easy. Firstly, nano SiC powder is mixed with resin powder in a predetermined ratio, and then heated and pressed through a mold, which can effectively eliminate the uneven distribution of diamond particles by using the uniform dispersion property of SiC nanoparticles, thus significantly improving the strength and hardness of the tools and extending their service life.

In addition to the manufacture of resin-based diamond tools, silicon carbide nanoparticles can also be used in manufacturing various abrasives and processing tools, such as grinding wheels, sandpaper, polishing materials, etc. The application prospect of nano silicon carbide is very broad. With the increasing tendency of various industries to use high performance and high quality processing tools and abrasives, nano silicon carbide will certainly produce more and more extensive applications in these fields.

In conclusion, nano silicon carbide powder has a wide application prospect as a high quality polishing material. With the continuous progress of science and technology, nano silicon carbide and resin-based diamond tools will be continuously improved and upgraded to a wider range of fields.

Hongwu Nano is a professional manufacturer of nano precious metal powders and their oxides, with reliable and stable product quality and excellent price. Hongwu Nano supplies SiC nanopowder. Welcome to contact us for further info.

Media Contact
Company Name: Guangzhou Hongwu Material Technology Co., Ltd.
Email: Send Email
Phone: 17876573996
Country: China
Website: https://www.hwnanoparticles.com/


Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.