Laser Focus World is an industry bedrock—first published in 1965 and still going strong. We publish original articles about cutting-edge advances in lasers, optics, photonics, sensors, and quantum technologies, as well as test and measurement, and the shift currently underway to usher in the photonic integrated circuits, optical interconnects, and copackaged electronics and photonics to deliver the speed and efficiency essential for data centers of the future.

Our 80,000 qualified print subscribers—and 130,000 12-month engaged online audience—trust us to dive in and provide original journalism you won’t find elsewhere covering key emerging areas such as laser-driven inertial confinement fusion, lasers in space, integrated photonics, chipscale lasers, LiDAR, metasurfaces, high-energy laser weaponry, photonic crystals, and quantum computing/sensors/communications. We cover the innovations driving these markets.

Laser Focus World is part of Endeavor Business Media, a division of EndeavorB2B.

Laser Focus World Membership

Never miss any articles, videos, podcasts, or webinars by signing up for membership access to Laser Focus World online. You can manage your preferences all in one place—and provide our editorial team with your valued feedback.

Magazine Subscription

Can you subscribe to receive our print issue for free? Yes, you sure can!

Newsletter Subscription

Laser Focus World newsletter subscription is free to qualified professionals:

The Daily Beam

Showcases the newest content from Laser Focus World, including photonics- and optics-based applications, components, research, and trends. (Daily)

Product Watch

The latest in products within the photonics industry. (9x per year)

Bio & Life Sciences Product Watch

The latest in products within the biophotonics industry. (4x per year)

Laser Processing Product Watch

The latest in products within the laser processing industry. (3x per year)

Get Published!

If you’d like to write an article for us, reach out with a short pitch to Sally Cole Johnson: [email protected]. We love to hear from you.

Photonics Hot List

Laser Focus World produces a video newscast that gives a peek into what’s happening in the world of photonics.

Following the Photons: A Photonics Podcast

Following the Photons: A Photonics Podcast dives deep into the fascinating world of photonics. Our weekly episodes feature interviews and discussions with industry and research experts, providing valuable perspectives on the issues, technologies, and trends shaping the photonics community.

Editorial Advisory Board

  • Professor Andrea M. Armani, University of Southern California
  • Ruti Ben-Shlomi, Ph.D., LightSolver
  • James Butler, Ph.D., Hamamatsu
  • Natalie Fardian-Melamed, Ph.D., Columbia University
  • Justin Sigley, Ph.D., AmeriCOM
  • Professor Birgit Stiller, Max Planck Institute for the Science of Light, and Leibniz University of Hannover
  • Professor Stephen Sweeney, University of Glasgow
  • Mohan Wang, Ph.D., University of Oxford
  • Professor Xuchen Wang, Harbin Engineering University
  • Professor Stefan Witte, Delft University of Technology

Epitope Binning Powered By LENSai TM Technology Can Analyze Over 5,000 Sequences With No Physical Materials Needed, Matches Classical Wet Lab Binning Results

VICTORIA, BC / ACCESSWIRE / April 22, 2024 / ImmunoPrecise Antibodies Ltd. (NASDAQ: IPA), an AI-driven biotherapeutic research and technology company, has recently announced an expansion of its already successful LENSai TM Platform. LENSai, which is run by the company's subsidiary, BioStrand, provides a unique and comprehensive view of life sciences data by linking sequence, structure, function and literature information from the entire biosphere. The platform is now integrating epitope binning into its formulas.

Epitope binning is a method used to compare and categorize a collection of monoclonal antibodies that are designed to target a specific protein. In this process, each antibody is tested against all the others to see if they interfere with each other's ability to bind to the target protein. By doing this, scientists can determine which antibodies have similar or related binding sites on the target protein. Antibodies with similar binding sites are grouped together, or "binned," based on their interactions with each other.

The main goal of epitope binning is to group antibodies that have similar target binding properties, which helps researchers understand the characteristics and behavior of different antibodies and their potential in targeting specific proteins for various applications, such as drug development or disease diagnosis.

To achieve accurate epitope binning, LENSai's algorithm incorporates multiple components. It analyzes the sequential and structural profiles of the antibodies, which means it examines the specific sequence and 3D structure of the antibodies to understand their binding capabilities. It also takes into account docking information, which considers factors like steric hindrance and glycosylation sites that may affect the antibody-antigen interaction. LENSai's algorithm then looks at the atomic interactions between the antibody-antigen complexes to gain a better understanding of their binding specificity.

In a recently published case study, LENSai applied its epitope binning algorithm to a set of 29 antibody sequences that targeted a transmembrane protein. The results obtained from LENSai's in silico clustering analysis were then compared to the data from classical wet lab binning procedures.

The results showed a high level of agreement between LENSai's in silico Epitope Binning and classical wet lab binning. In other words, LENSai's algorithm could accurately categorize and identify the epitopes in a similar manner to the traditional experimental approach. These findings demonstrate that LENSai Epitope Binning can effectively match the results of in vitro competition assays, providing researchers with high-confidence predictions of antibody-antigen interactions.

This case study highlights the potential of LENSai's algorithm in addressing the challenges presented by the increasing number of antibodies generated in discovery campaigns. By offering both high accuracy and scalability, LENSai's in silico binning approach can support the early stages of antibody discovery, enabling researchers to efficiently analyze a large volume of diverse antibodies and select the most promising candidates for further investigation.

In silico epitope binning powered by LENSai technology thus offers a pivotal advancement, with its ability to analyze over 5,000 sequences, delivering rapid insights for early triaging. Its algorithms enhance biological research, offering accurate, high-throughput candidate selection while reducing time and costs. For small subsets with less than 5,000 antibodies, it can deliver results within mere hours. Furthermore, it requires only protein sequences and no physical materials - reducing the effort involved even more.

This platform is further reinforcing BioStrand's position at the forefront of AI-driven biotherapeutic research and technology. The market for AI in healthcare is forecasted to reach $187.95 billion by 2030. ImmunoPrecise Antibodies and its subsidiary seem well-positioned to lead the AI and healthcare industry in the field of antibodies.

Featured photo by National Cancer Institute on Unsplash.

Contact:
investors@ipatherapeutics.com

SOURCE: ImmunoPrecise Antibodies Ltd.



View the original press release on accesswire.com

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.