Laser Focus World is an industry bedrock—first published in 1965 and still going strong. We publish original articles about cutting-edge advances in lasers, optics, photonics, sensors, and quantum technologies, as well as test and measurement, and the shift currently underway to usher in the photonic integrated circuits, optical interconnects, and copackaged electronics and photonics to deliver the speed and efficiency essential for data centers of the future.

Our 80,000 qualified print subscribers—and 130,000 12-month engaged online audience—trust us to dive in and provide original journalism you won’t find elsewhere covering key emerging areas such as laser-driven inertial confinement fusion, lasers in space, integrated photonics, chipscale lasers, LiDAR, metasurfaces, high-energy laser weaponry, photonic crystals, and quantum computing/sensors/communications. We cover the innovations driving these markets.

Laser Focus World is part of Endeavor Business Media, a division of EndeavorB2B.

Laser Focus World Membership

Never miss any articles, videos, podcasts, or webinars by signing up for membership access to Laser Focus World online. You can manage your preferences all in one place—and provide our editorial team with your valued feedback.

Magazine Subscription

Can you subscribe to receive our print issue for free? Yes, you sure can!

Newsletter Subscription

Laser Focus World newsletter subscription is free to qualified professionals:

The Daily Beam

Showcases the newest content from Laser Focus World, including photonics- and optics-based applications, components, research, and trends. (Daily)

Product Watch

The latest in products within the photonics industry. (9x per year)

Bio & Life Sciences Product Watch

The latest in products within the biophotonics industry. (4x per year)

Laser Processing Product Watch

The latest in products within the laser processing industry. (3x per year)

Get Published!

If you’d like to write an article for us, reach out with a short pitch to Sally Cole Johnson: [email protected]. We love to hear from you.

Photonics Hot List

Laser Focus World produces a video newscast that gives a peek into what’s happening in the world of photonics.

Following the Photons: A Photonics Podcast

Following the Photons: A Photonics Podcast dives deep into the fascinating world of photonics. Our weekly episodes feature interviews and discussions with industry and research experts, providing valuable perspectives on the issues, technologies, and trends shaping the photonics community.

Editorial Advisory Board

  • Professor Andrea M. Armani, University of Southern California
  • Ruti Ben-Shlomi, Ph.D., LightSolver
  • James Butler, Ph.D., Hamamatsu
  • Natalie Fardian-Melamed, Ph.D., Columbia University
  • Justin Sigley, Ph.D., AmeriCOM
  • Professor Birgit Stiller, Max Planck Institute for the Science of Light, and Leibniz University of Hannover
  • Professor Stephen Sweeney, University of Glasgow
  • Mohan Wang, Ph.D., University of Oxford
  • Professor Xuchen Wang, Harbin Engineering University
  • Professor Stefan Witte, Delft University of Technology

New method to blend functions for soft electronics



Mixing two or three alkyl-π liquids can achieve the right combination of functions for soft electronics.

TSUKUBA, Japan, June 18, 2025 - (ACN Newswire) - Soft electronics are an exciting and innovative class of technology that brings together bendable, stretchable semiconducting materials for applications in areas ranging from fashion to healthcare.  Researchers have recently developed a new technique to adjust the properties of liquids that could be used to create soft electronics.

Researchers successfully blended various combinations and proportions of three solvent-free alkyl-π room-temperature liquids that fluoresced red, green, or blue light, with no color variation within the material showing that the alkyl-π liquids had merged evenly. Credit: Image is reproducible by CC-BY license. Please credit the STAM Journal.
Researchers successfully blended various combinations and proportions of three solvent-free alkyl-π room-temperature liquids that fluoresced red, green, or blue light, with no color variation within the material showing that the alkyl-π liquids had merged evenly. (Credit: Image is reproducible by CC-BY license. Please credit the STAM Journal.)

Room-temperature alkylated-π molecular liquids (known as alkyl-π liquids) are an exciting new material that holds great promise for soft electronics. However, one challenge with these fascinating liquids lies in fine-tuning their physical, chemical, and electronic properties – including their ability to interact with light – to achieve the desired functionality.

A new study, led by researchers from the National Institute of Materials Science (NIMS) in Tsukuba, Japan, has explored a strategy for blending together alkyl-π liquids to merge their functions homogeneously. The researchers used photoluminescent color tuning to demonstrate how well the process has worked. Their findings have been published in the journal Science and Technology of Advanced Materials.

Previous efforts to control the properties of alkyl-π liquids have taken one of two approaches. The first involves incorporating small amounts of other molecules, such as dyes, into the liquid. “When modulating function by adding solid dopants, the dopant molecules have poor solubility, leading to insoluble aggregates and inconsistencies in properties such as luminescent color,” says Dr. Takashi Nakanishi of the Research Center for Materials Nanoarchitectonics at NIMS.

The second approach involves chemically modifying the alkyl-π liquids. While this can achieve a uniform result, designing and synthesising entirely new molecules is difficult and less time- and cost-effective.

In the new study, researchers synthesised three solvent-free alkyl-π room-temperature liquids that fluoresced red, green, or blue light, and then they blended the liquids together in varying proportions. They successfully created a range of homogeneous liquid blends of colors with no color variation within the material, showing that the alkyl-π liquids had merged evenly.

The team also assessed how well the two liquids had mixed by changing the temperature and studying how the flow of the mixed liquids changed over time at different temperatures. This approach further confirmed that the liquids were successfully blended together.

“The liquid–liquid blending method implemented in this study for alkyl-π liquids facilitates the production of low-volatility, ink-like materials that exhibit a diverse spectrum of uniform luminescent colors, devoid of any color unevenness,” Dr. Nakanishi says. “This means it will be possible to apply or coat the desired function with simple operations such as painting, sandwiching, or soaking the liquid materials wherever needed.”

The research opens the path to blending alkyl-π liquids to vary other functions, such as photoconductivity, charge retention, or gas sensing.

Further information
Takashi Nakanishi
National Institute for Materials Science (NIMS)
nakanishi.takashi@nims.go.jp

Paper: https://doi.org/10.1080/14686996.2025.2515007

About Science and Technology of Advanced Materials (STAM)

Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials. https://www.tandfonline.com/STAM 

Dr. Kazuya Saito
STAM Publishing Director
Email: SAITO.Kazuya@nims.go.jp

Press release distributed by Asia Research News for Science and Technology of Advanced Materials.

]]>

Source: Science and Technology of Advanced Materials

Copyright 2025 ACN Newswire . All rights reserved.

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.