ETFOptimize | High-performance ETF-based Investment Strategies

Quantitative strategies, Wall Street-caliber research, and insightful market analysis since 1998.


ETFOptimize | HOME
Close Window

Kioxia Presented Image Classification System Deploying Memory-Centric AI with High-capacity Storage at ECCV 2022

Kioxia Corporation, the world leader in memory solutions, has developed an image classification system based on Memory-Centric AI, an AI technology that utilizes high-capacity storage. The system classifies images using a neural network that refers to knowledge stored in external high-capacity storage; this avoids "catastrophic forgetting," one of the major challenges of neural networks, and allows knowledge to be added or updated without the loss of current knowledge. This technology was presented on October 25 at the oral session of European Conference on Computer Vision 2022 (ECCV 2022) in Tel Aviv, one of the top conferences in the field of computer vision[1].

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20221101006375/en/

Image classification utilizing high-capacity storage (Graphic: Business Wire)

Image classification utilizing high-capacity storage (Graphic: Business Wire)

In conventional AI techniques, neural networks are trained to acquire knowledge by updating parameters called “weights.” Once fully trained, in order to acquire new knowledge a neural network must be either re-trained from the beginning or fine-tuned with new data. The former requires huge amounts of time and consumes significant energy costs, while the latter requires parameters to be updated and faces the catastrophic forgetting problem of losing the knowledge acquired in the past which leads to deterioration of classification accuracy.

To address the issues of cost and accuracy in neural network-based image classification systems, the new solution stores large amounts of image data, labels and image feature maps[2] as knowledge in a high-capacity storage. The neural network then classifies images by referring to that stored knowledge (Figure 1). Using this method, knowledge can be added or updated by adding newly obtained image labels and feature maps to the stored data. As there is no need to re-train or update weights, which may cause “catastrophic forgetting,” image classification can be maintained more accurately.

Furthermore, by using the data referred from the storage when the neural network classifies images, the basis for the classification results can be visualized, which is expected to improve the explainability of AI[3] and alleviate the black-box problem[4], in turn allowing the selective modification of knowledge sources. In addition, by analyzing the referred data, the contribution of each stored data can be evaluated according to the frequency of references.

Guided by its mission of "Uplifting the World with ‘Memory,’" Kioxia will continue to contribute to the development of AI and storage technologies by expanding Memory-Centric AI beyond image classification to other areas and promoting research and development of AI technology utilizing high-capacity storage.

About Memory-Centric AI

Introductory Video: https://youtu.be/lw8XKhviGJc

Memory-Centric AI, Part I: How Kioxia’s Top Engineers Are Developing an AI That Relies on Memory https://brand.kioxia.com/en-jp/articles/article25.html

Memory-Centric AI, Part II: An Internet of Memories: Brainstorming Uses for Memory-Centric AI https://brand.kioxia.com/en-jp/articles/article26.html

About ECCV

The European Conference on Computer Vision (ECCV) is one of the top conferences in the field of computer vision. In recent years, ECCV has established itself as a prime venue for the presentation of AI research papers including image classification, object detection, and other technologies using deep learning. The oral presentation acceptance rate was 2.7% in this year.

[1] Paper title: K. Nakata et. al., “Revisiting a kNN-based Image Classification System with High-capacity Storage”, European Conference on Computer Vision 2022 (ECCV 2022)

[2] Image feature maps: multidimensional (e.g., 1,024-dimensional) numerical data obtained through neural network operations

[3] Explainability of AI: possibly of explaining the basis and reasons of results predicted by AI in a way that can be interpreted by humans.

[4] Black-box problem: the process leading to the results predicted by AI is not interpretable to humans, making it a black box problem.

Company names, product names, and service names may be trademarks of third-party companies.

About Kioxia

Kioxia is a world leader in memory solutions, dedicated to the development, production and sale of flash memory and solid-state drives (SSDs). In April 2017, its predecessor Toshiba Memory was spun off from Toshiba Corporation, the company that invented NAND flash memory in 1987. Kioxia is committed to uplifting the world with memory by offering products, services and systems that create choice for customers and memory-based value for society. Kioxia's innovative 3D flash memory technology, BiCS FLASH™, is shaping the future of storage in high-density applications, including advanced smartphones, PCs, SSDs, automotive and data centers.

Contacts

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms Of Service.


 

IntelligentValue Home
Close Window

DISCLAIMER

All content herein is issued solely for informational purposes and is not to be construed as an offer to sell or the solicitation of an offer to buy, nor should it be interpreted as a recommendation to buy, hold or sell (short or otherwise) any security.  All opinions, analyses, and information included herein are based on sources believed to be reliable, but no representation or warranty of any kind, expressed or implied, is made including but not limited to any representation or warranty concerning accuracy, completeness, correctness, timeliness or appropriateness. We undertake no obligation to update such opinions, analysis or information. You should independently verify all information contained on this website. Some information is based on analysis of past performance or hypothetical performance results, which have inherent limitations. We make no representation that any particular equity or strategy will or is likely to achieve profits or losses similar to those shown. Shareholders, employees, writers, contractors, and affiliates associated with ETFOptimize.com may have ownership positions in the securities that are mentioned. If you are not sure if ETFs, algorithmic investing, or a particular investment is right for you, you are urged to consult with a Registered Investment Advisor (RIA). Neither this website nor anyone associated with producing its content are Registered Investment Advisors, and no attempt is made herein to substitute for personalized, professional investment advice. Neither ETFOptimize.com, Global Alpha Investments, Inc., nor its employees, service providers, associates, or affiliates are responsible for any investment losses you may incur as a result of using the information provided herein. Remember that past investment returns may not be indicative of future returns.

Copyright © 1998-2017 ETFOptimize.com, a publication of Optimized Investments, Inc. All rights reserved.