ETFOptimize | High-performance ETF-based Investment Strategies

Quantitative strategies, Wall Street-caliber research, and insightful market analysis since 1998.


ETFOptimize | HOME
Close Window

Elastic Introduces New Vector Storage Format DiskBBQ for More Efficient Vector Search

New alternative to HNSW brings faster, more cost-effective search

Elastic (NYSE: ESTC), the Search AI Company, announced DiskBBQ, a new disk-friendly vector search algorithm in Elasticsearch that delivers more efficient vector search at scale than traditional industry-standard search techniques used in many vector databases. DiskBBQ eliminates the need to keep entire vector indexes in memory, delivers predictable performance, and costs less.

Hierarchical Navigable Small Worlds (HNSW) is the most commonly used search technique in vector databases because of its speed and accuracy in similarity search. However, it requires all vectors to reside in memory, which can be costly at large scale. DiskBBQ, available now in Elasticsearch 9.2, uses BBQ (Better Binary Quantization) to address this by compressing vectors efficiently and clustering them into compact partitions for selective disk reads. This reduces RAM usage, avoids spikes in data retrieval time, and improves system performance for data ingestion and organization.

“As AI applications scale, traditional vector storage formats force them to choose between slow indexing or significant infrastructure costs required to overcome memory limitations,” said Ajay Nair, general manager, Platform at Elastic. “DiskBBQ is a smarter, more scalable approach to high-performance vector search on very large datasets that accelerates both indexing and retrieval.”

In benchmark testing, DiskBBQ demonstrated a balance of speed, stability and efficiency that is ideal for large-scale vector search on lower-cost memory infrastructure and object storage. As a disk-friendly ANN algorithm, it requires far less memory than HNSW, which keeps the entire graph in RAM by offloading data to disk and reading only relevant vector clusters at query time. This design removes memory as a limiting factor, enabling Elasticsearch to scale to massive datasets limited only by CPU and disk.

DiskBBQ sustained query latencies of roughly 15 milliseconds while operating in as little as 100 MB of total memory, where traditional HNSW indexing could not run. As available memory increased, DiskBBQ’s performance scaled smoothly without the sharp latency cliffs typical of in-memory graph approaches.

To learn more about DiskBBQ, read the Elastic blog.

Availability

DiskBBQ is available in technical preview in Elasticsearch Serverless.

About Elastic

Elastic (NYSE: ESTC), the Search AI Company, integrates its deep expertise in search technology with artificial intelligence to help everyone transform all of their data into answers, actions, and outcomes. Elastic's Search AI Platform — the foundation for its search, observability, and security solutions — is used by thousands of companies, including more than 50% of the Fortune 500. Learn more at elastic.co.

Elastic and associated marks are trademarks or registered trademarks of Elasticsearch BV and its subsidiaries. All other company and product names may be trademarks of their respective owners.

Contacts

Recent Quotes

View More
Symbol Price Change (%)
AMZN  244.14
-6.06 (-2.42%)
AAPL  271.75
+1.62 (0.60%)
AMD  241.76
-14.57 (-5.68%)
BAC  53.48
+1.03 (1.97%)
GOOG  286.26
+1.51 (0.53%)
META  622.97
-12.98 (-2.04%)
MSFT  498.73
-8.43 (-1.66%)
NVDA  189.08
-6.13 (-3.14%)
ORCL  244.34
-5.97 (-2.39%)
TSLA  449.00
-13.07 (-2.83%)
Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the Privacy Policy and Terms Of Service.


 

IntelligentValue Home
Close Window

DISCLAIMER

All content herein is issued solely for informational purposes and is not to be construed as an offer to sell or the solicitation of an offer to buy, nor should it be interpreted as a recommendation to buy, hold or sell (short or otherwise) any security.  All opinions, analyses, and information included herein are based on sources believed to be reliable, but no representation or warranty of any kind, expressed or implied, is made including but not limited to any representation or warranty concerning accuracy, completeness, correctness, timeliness or appropriateness. We undertake no obligation to update such opinions, analysis or information. You should independently verify all information contained on this website. Some information is based on analysis of past performance or hypothetical performance results, which have inherent limitations. We make no representation that any particular equity or strategy will or is likely to achieve profits or losses similar to those shown. Shareholders, employees, writers, contractors, and affiliates associated with ETFOptimize.com may have ownership positions in the securities that are mentioned. If you are not sure if ETFs, algorithmic investing, or a particular investment is right for you, you are urged to consult with a Registered Investment Advisor (RIA). Neither this website nor anyone associated with producing its content are Registered Investment Advisors, and no attempt is made herein to substitute for personalized, professional investment advice. Neither ETFOptimize.com, Global Alpha Investments, Inc., nor its employees, service providers, associates, or affiliates are responsible for any investment losses you may incur as a result of using the information provided herein. Remember that past investment returns may not be indicative of future returns.

Copyright © 1998-2017 ETFOptimize.com, a publication of Optimized Investments, Inc. All rights reserved.